
ANCHORAGE WATER & WASTEWATER UTILITY

3000 Arctic Boulevard Anchorage, Alaska 99503-3898 (907)

November 16, 1990

NOV 201990

OCEAN PROGRAMS SIGNED

FPA - PERION IN

Mr. Douglas R. Redburn, Chief Water Quality Management Section Alaska Dept. of Environmental Conservation P.O. Box O Juneau, Alaska 99811-1800

Dear Mr. Redburn:

Subject:

Point Woronzof WWTP Site-Specific Criteria

At our October 25, 1990, meeting with you, George Wilson, Mike Wheeler, and Dave Sturtevant, the required Site-Specific Criteria (SSC) values for six metals in the Knik Arm of Cook Inlet were discussed. There are six metals that exceed Alaska's Water Quality Standards for marine water uses. These are chromium (hex), copper, mercury, nickel, lead, and zinc.

We prepared a graph that showed the maximum background values and the recommended SSC value for each metal. The recommended SSC value was the highest measured background concentration plus EPA's chronic concentration. We also recommended that the SSC zone be the same as the State's chlorine mixing zone. (This zone is currently part of a 600 meter radius circle, but AWWU has requested this zone's radius be increased to 740 meters in the pending permit renewal application.)

You proposed an alternative approach so the SSC zone can be as small as possible. You asked that a new figure be prepared that includes the range of concentrations in the treatment plant's effluent for the six metals.

To prepare the new figure, we have tabulated monthly values for the last 4 years and have listed the maximum and minimum values. (See the attached table.) Four years of data is a relatively short record, and future effluent flows may include higher short-term concentrations.

Mr. Douglas R. Redburn Page 2 November 16, 1990

We also reviewed the various existing and proposed ADEC and EPA zones for the Point Woronzof WWTP outfall. We have concluded that, to meet ADEC's request, the new SSC zone can be the same as the existing ADEC fecal coliform zone, which is a circle with a radius of 245 meters, centered on the diffuser. At the permit renewal period flow of 67 million gallons per day, the dilution is calculated to be 206:1.

There is risk of future Point Woronzof WWTP effluent violations by fine tuning the SSC zone to as small an area as allowed by the present data. A very limited amount of total recoverable metals data are available, and future Knik Arm samples may contain higher background concentrations. We strongly recommend that ADEC consider this in their review of this information and allow for an increase in the SSC values if future background concentrations exceed existing data, and directly relate the SSC concentration to the background concentration. We suggest that the new permit state the basis for the SSC for each metal.

The attached figure shows the range of effluent concentrations, the maximum observed concentration in Knik Arm, the EPA chronic concentration, and the proposed SSC concentration. The values shown in the figure are listed below:

POINT WORONZOF WWTP 301(h) RENEWAL SITE SPECIFIC CRITERIA FOR A 245 METER RADIUS ZONE DILUTION 206:1 (ConcentrationsMicrograms per Liter)									
Metal	Effluent Concentration Range 6/86-5/90	Knik Arm Maximum EPA Concentration Chronic 1989 Concentration		Recommended Site-Specific Concentration					
Cr+6	<10 - <30	124	50	124					
Cu	60 - 180	126	2.9	127					
Hg	0.2 - 1.5	0.231	0.025	0.237					
Ni	3 - 100	200	7.1	200					
Pb	1 - 50	31	5.6	32					
Zn	56 - 610	304	58	306					

Mr. Douglas R. Redburn Page 3 November 16, 1990

Thank you for meeting with us last month. We hope this new information will allow ADEC to proceed expeditiously with our SSC request. If you have any questions, please call us.

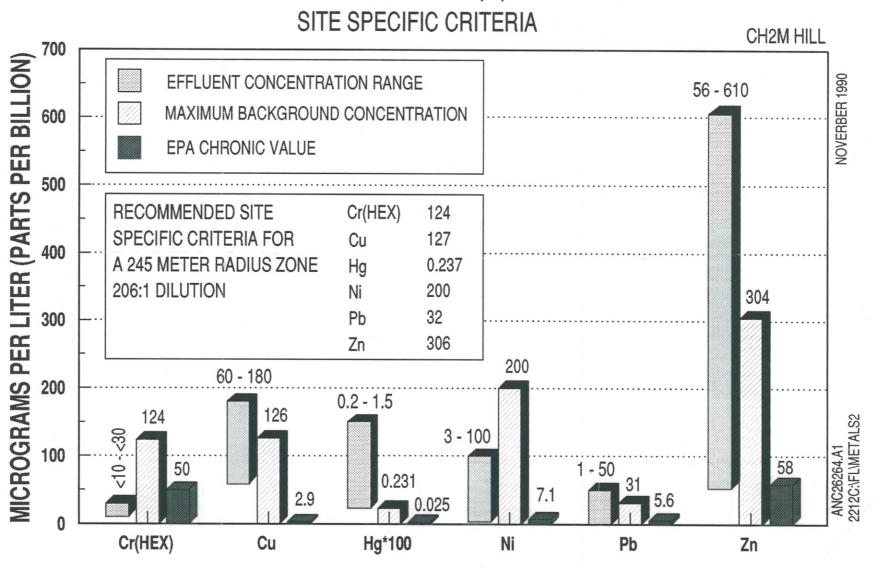
Sincerely,

Charley/Bryant/

Manager, Operations Division

ANCHORAGE WATER & WASTEWATER UTILITY

bja:26264:01 Attachments


cc:

Carla Fisher, EPA

George Wilson, ADEC

Floyd Damron, CH2M HILL

POINT WORONZOF WWTP 301(h) WAIVER RENEWAL

MONTH	MONTHLY Cr+6	MAXIMUM DAY Cu	CONCENTRATE Hg	CION, UG/L Ni	(PARTS PER Pb	BILLION) Zn
5/90 4/90 3/90 2/90 1/90 12/89 11/89 10/89 9/89 8/89 7/89 6/89 5/89	- 10 - 10 10 10 10 10 10 10 10	70 60 70 70 70 90 80 60 80 90 80	0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5	70 40 40 10 30 8 7 40 40 40 40	10 6 7 6 8 10 9 6 18 22 10 22	68 67 86 73 69 96 98 56 63 85 115 84 113 99
3/89 2/89 1/89 12/88 11/88 10/88 9/88 8/88 7/88 6/88 5/88 4/88 3/88 2/88 1/87 11/87 10/87 9/87 8/87 7/87 6/87 5/87 4/87 3/87 2/87 11/86 11/86 10/86 9/86 8/86 6/86	10 10 10 10 10 10 10 10 10 10 10 10 10 1	170 120 120 100 180 120 70 150 100 90 140 90 130 70 90 130 140 100 100 70	0.8 0.7 0.4 0.7 0.4 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.4 0.5 0.2 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	8 35 16 40 40 40 40 40 40 40 40 40 40 40 40 40	22 17 14 21 49 18 6 12 12 12 14 12 17 18 12 19 17 18 15 50 14 11 16 10 16 10 16 10 16 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	230 111 108 145 133 123 129 119 78 118 120 89 107 86 913 119 133 94 60 129 108 100 100 100 120 540
	Cr+6	Cu	Нд	Ni	Pb	Zn
MAX VALUE MIN VALUE	30 10	180 60	1.5	100	50 1	610 56